

Examples of the WOCAT database applications in sustainable land and water resources research

28 May 2024

Department of Agricultural and Forestry Science University of Florence Water Harvesting Lab Luigi.piemontese@unifi.it

Phd in Sustainability Science, Stockholm University

WOCAT database: Key information

- Inventary of practices (technologies) and approaches
- Location (LAT LON) of many practices across the world

Article 2

- Pre-Post implementation assessment
- Detialed technical and socio-econmic account of practices implementations

Article 1

Global Environmental Change 63 (2020) 102121

Contents lists available at ScienceDirect

Global Environmental Change

journal homepage: www.elsevier.com/locate/gloenvcha

Estimating the global potential of water harvesting from successful case studies

Luigi Piemontese^{a,*}, Giulio Castelli^b, Ingo Fetzer^a, Jennie Barron^c, Hanspeter Liniger^d, Nicole Harari^d, Elena Bresci^b, Fernando Jaramillo^{a,e}

^a Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden

^b Department of Agriculture, Food, Environment and Forestry (DAGRI), Università degli Studi di Firenze, Italy

^c Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden

^d Centre for Development and Environment, University of Bern, Switzerland

^e Department of Physical Geography, Stockholm University, Stockholm, Sweden

Socio-economic impacts			
Crop production	decreased	increased	Quantity before SLM: 60
			Quantity after SLM: 80
			Technology reduce flood and lower lands doesnt
			effect by floods
irrigation water availability	decreased 🖌	increased	Quantity before SLM: 20
			Quantity after SLM: 25
			Increasing under ground water by applying
			technology
farm income	decreased 🗸	increased	Quantity before SLM: 0
			Ouantity after SLM: 50
			Cultivation of cash crop in the terraces (farm income
			from uplands)

Socio-economic impacts				
Crop production	decreased	Quantity before SLM: 60 Quantity after SLM: 80		
		Technology reduce flood and lower lands doesnt effect by floods		
irrigation water availability	decreased 🖌 🖌 increased	Quantity before SLM: 20		
		Quantity after SLM: 25 Increasing under ground water by applying technology		
farm income	decreased 🗾 🖌 🖌 increased	Quantity before SLM: 0		
		Quantity after SLM: 50 Cultivation of cash crop in the terraces (farm income from uplands)		

Assumption:

The increase in crop production of a case study can be replicated in areas with **similar social-ecological conditions**

Archetypes approach

Identified the similar social ecological conditions across the 167 case studies based on some case studies (wocat data) and some social-ecological criteria

Social-ecological perspective

11 social-ecological criteria

- Precipitation
- Seasonality Climate
- Aridity
- Slope
- Soil quality Land
- Farm size
- Land tenure
- Remoteness (market)
- Agricultural labor
- Human Development Index
- Gender inequality

- Socio-economic

Results

3 -2 -1 -2 -1 2 2 -2 -1 2 3 -2 -1 Ó 2 -1 Ó 1 2 3 -2 -1 ò ż 3 1

Results

Social-ecological regions for the transferability of WH case studies

19% of global agricultural land

IOP Publishing Environ. Res. Lett. 17 (2022) 045010

citation and DOI.

https://doi.org/10.1088/1748-9326/ac5ae0

ENVIRONMENTAL RESEARCH LETTERS

	LETTER				
	Investing in sustainable intensification for smallholders:				
OPEN ACCESS	quantifying large-scale costs and benefits in Uganda				
RECEIVED 8 June 2021	Luigi Piemontese ^{1,2,*} , Rick Nelson Kamugisha ^{3,4} , Jennie Barron ⁵ , Joy Margaret Biteete Tukahirwa ³ ,				
A February 2022	Nicole Harari [®] and Fernando Jaramillo ⁷ [©]				
ACCEPTED FOR PUBLICATION 4 March 2022	 Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden Department of Agriculture, Food, Environment and Forestry (DAGRI), Università degli Studi di Firenze, Firenze, Italy Uganda Landcare Network (ULN), Uganda 				
18 March 2022	* College of Agriculture and Environmental Sciences (CAES), Department of Extension and Innovation Studies, Makerere University, Kampala Uganda				
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.	 ⁵ Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden ⁶ Centre for Development and Environment, University of Bern, Switzerland ⁷ Department of Physical Geography, Stockholm University, Stockholm, Sweden * Author to whom any correspondence should be addressed. E-mail: piemonteseluigi@gmail.com 				
Any further distribution of this work must maintain attribution to	Keywords: Uganda, agriculture, sustainable intensification, archetype analysis, smallholder farming, sustainability science				
the author(s) and the title of the work, journal	Supplementary material for this article is available online				

Similar Archetype approach

- 82 cases of combined SLWM practices in Uganda (about 50 from WOCAT and 30 from field interviews)
- Bundle of practices -> Recurrent combination of practices
- Spatial archetypes -> spatial domain of transferability

Statistical method

• Hierarchical clustering (bundles and spatial)

<u>6 PRACTICES BUNDLES</u> We identified the SLWM practices that WERE most often implemented together (Hierarchical clustering)

a) Terraces	b) Trenches	c) Agroforestry	d) Grass strips	e) Check dam	f) Water harvesting	g)
Mulching	h) Intercroppi	ng i) Conservat	ion I) Zero graz	ing m) Manure	n) Integrated crop-ar	nima

Clustering district with similar social-ecological conditions

Conclusions

- Useful tool for information on:
 - Specific technologies (technical drawings, materials etc.)
 - Extent/type of technologies in specific countries
 - Pre-post implementation assessments (costs, benefits)
- Geographical gaps (Americas and Europe)
- Qualitative information > Quantitative

Thanks!

Email: luigi.piemontese@unifi Facebook: <u>Water Harvesting Lab – UNIFI</u> Web: <u>https://www.dagri.unifi.it/vp-808-water-</u> <u>harvesting-lab.html?newlang=eng</u> Youtube: <u>Water Harvesting Lab – UNIFI</u>

